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ABSTRACT: In the hydrological sciences, the outstanding challenge of regional modeling requires to capture common

and event-specific hydrologic behaviors driven by rainfall spatial variability and catchment physiography during floods. The

overall objective of this study is to develop robust understanding and predictive capability of how rainfall spatial variability

influences flood peak discharge relative to basin physiography. A machine-learning approach is used on a high-resolution

dataset of rainfall and flooding events spanning 10 years, with rainfall events and basins of widely varying characteristics selected

across the continental United States. It overcomes major limitations in prior studies that were based on limited observations or

hydrological model simulations. This study explores first-order dependencies in the relationships between peak discharge,

rainfall variability, and basin physiography, and it sheds light on these complex interactions using a multidimensional statistical

modeling approach. Among different machine-learning techniques, XGBoost is used to determine the significant physio-

graphical and rainfall characteristics that influence peak discharge through variable importance analysis. A parsimonious model

with low bias and variance is created that can be deployed in the future for flash flood forecasting. The results confirm that,

although the spatial organization of rainfall within a basin has a major influence on basin response, basin physiography is the

primary driver of peak discharge. These findings have unprecedented spatial and temporal representativeness in terms of flood

characterization across basins. An improved understanding of subbasin scale rainfall spatial variability will aid in robust flash

flood characterization as well as with identifying basins that could most benefit from distributed hydrologic modeling.

SIGNIFICANCE STATEMENT: To improve understanding of the effect of precipitation on floods, a machine-

learning workflow is designed to scrutinize hydrological processes and is applied on a database of flood events over the

United States. Themodel accurately reproduces observedmaximum streamflow. It reflects physical hydrologic behavior

that is consistent across basins, thereby addressing the challenge of regional modeling and improving upon traditional

hydrological models. Rainfall spatial variability has a major influence on flood peak discharge, although basin geo-

morphology is the primary driver. This grants an improved understanding of the conditions under which floods are

generated, allowing for better predictions and warning.

KEYWORDS: Atmosphere; Streamflow; Precipitation; Hydrology; Hydrometeorology; Radars/radar observations; Hydrologic

models; Flood events; Data science; Machine learning

1. Introduction

Flood hazards are ranked as the third most frequent type of

natural disasters behind severe storms and tropical cyclones.

They have caused estimated economic losses of $146.5 billion

in theUnited States in the last 40 years (about $450 per person

in the United States), with that total steadily increasing (Smith

2020). Most fatalities associated with flooding are attributed to

flash floods (Ashley and Ashley 2008) Higher flood risk is

expected, along with more intense precipitation events globally,

under climate change (Sillmann et al. 2013). Defined as rapid

rises of water along an existing waterway, flash floods typically

occur within 6 h and often within 3 h of a rainfall event (NWS

2010). Discharge at the outlet increases suddenly under the in-

tegrated influences of specific hydrological processes, all of

which show variable effects under different basin geomorpho-

logical, climatological, and spatiotemporal conditions (Saharia

et al. 2017). While emergency managers require timely and ac-

curate information on impacted areas, capturing the dynamics of

these multifactorial processes to predict flash floods is both

critical and difficult.
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In the hydrological sciences, the fundamental and long-standing

challenge of regional modeling hampers the characterization and

prediction of flash floods over large areas, which is increasingly

critical to preventing further loss of life as hydrologic regimes

change. Specifically, the challenge is to extrapolate modeled hy-

drological information from gauged to ungauged basins or main-

tain modeling skills when calibrating a hydrologic model from a

single basin tomultiple basins together (e.g., Blöschl and Sivapalan
1995; Blöschl et al. 2013; Hrachowitz et al. 2013). The observed

hydrologic response (discharge at the basin outlet) results from

unobserved, nonlinear, and integrated contributions of surface and

subsurface processes. This endemic lack of observational hydro-

logic constraints leaves a considerable range of options to adjust

hydrologic model parameters to reproduce the observed behavior

of a given watershed (problem of equifinality; Beven 2001), while

regional modeling involves capturing different hydrologic behav-

iors that vary with watershed characteristics such as geomorphol-

ogy, climatology, geology, pedology, etc. Plus, at the flash flood

scale process dynamics are driven by the spatial and temporal

distribution of rainfall. Existing operational methods of regional

flash flood monitoring focus on specific hydrologic processes. For

example, the Flash FloodGuidance (FFG) systemusedworldwide

estimates runoff generation (Sweeney 1992), However, FFG only

addresses parts of the flood’s characteristics and does not focus on

water propagation overland or along streams. It misses any oc-

currence of flooding downstream of the rainfall, especially the

delay, magnitude, and duration of the flood. Because a flood

forecasting system needs to describe these characteristics ahead

of time, modern instances of forecasting systems such as the

Ensemble Framework for Flash Flood Forecasting (EF5;Gourley

et al. 2017), the NationalWaterModel (Salas et al. 2018), and the

Global Flood Awareness System (GLOFAS; Alfieri et al. 2013;

https://www.globalfloods.eu) use hydrologic models to interpret

and predict flood characteristics through simplified representa-

tions of the processes such as water routing that take place in the

watershed. Such models are calibrated at local points where

streamflow observations are available, leaving large areas poten-

tially without accurate hydrological simulations.

Regional modeling can be addressed through two types of

approaches:model-dependentmethods and data-drivenmethods

(Razavi and Coulibaly 2013). Models can be classified into three

categories based on how these hydrological processes are de-

scribed: empirical, physical, and conceptual (Solomatine and

Wagener 2011). Traditional empirical (statistical) models are

built from the joint analysis of precipitation (input) and discharge

(response) time series data to derive statistical equations that

represent the input-response behavior of a catchment. Their

predictive power is limited at the basin outlet (Devia et al. 2015).

Conceptual models synthesize hydrologic processes into an a

priori parametric structure. Parameters are imperfect represen-

tations of physical processes that are calibrated using catchment

observations. They can be challenging to interpret, although

spatially distributed parameters allow for the representation of

spatial variations of hydrologic properties and processes (dis-

tributed models). An example of this is the conceptual repre-

sentation of the water balance used in the EF5 modeling

framework (Flamig et al. 2020; Gourley et al. 2017), a state-of-

the-art system developed by theUniversity of Oklahoma and the

NOAA National Severe Storms Laboratory for flash flood pre-

diction at the U.S. National Weather Service. Physically based

models are mechanistic and designed to represent the physical

processes of the system. The rationale expects a degree of physical

realism to the extent that the laws of conservation of mass, mo-

mentum, and energy are maintained. The model’s structure and

parameters are designed a priori based on the understanding of

the basin physics. As such the selected parameters are not cali-

brated, making diagnosis difficult. One example is the routing

component within EF5 (Vergara et al. 2016). As an alternative,

emphasis on the advent of new data driven models through the

integration of machine learning is growing (Solomatine and

Wagener 2011). Recent data-driven approaches involving ma-

chine learning [e.g., long short-term memory (LSTM)] show high

potential for joint learning from diverse hydrological and mete-

orological training data to streamflow simulations but are often

limited to predictions of time series at particular sites (see review

from Mosavi et al. 2018) and seldom address spatiotemporal

predictions (Kratzert et al. 2019; Hu et al. 2019).

The novel approach of this study owes itself to several fac-

tors. For the first time to best our knowledge, a ‘‘physics in-

formed statistical’’ machine-learning modeling approach is

designed and evaluated for regional modeling at the hydro-

logical event scale. The event scale is relevant to identify

fundamental hydrologic processes that allow for space and

time transferability across watersheds, especially for flash

floods. Runoff and the transport of water through the channel

network and the magnitude of the peak discharge is controlled

by the physiography of the basin and the variability of rainfall

at the subbasin scale. One goal of this study is to understand the

relative impact of rainfall variability and catchment features on

flooding. The contribution of hydrologic processes driven by

watershed attributes are accounted for and represent their

integrated response at the basin outlet. Datasets are gathered

that represent the geomorphological, climatological, and spa-

tiotemporal precipitation attributes, thus incorporating the

physics of the hydrologic system. Specifically, precipitation

variability described as moments is shown to provide a refined

description and a deeper understanding of rainfall forcing

(Zoccatelli et al. 2011; Smith et al. 2005). A large-sample

dataset allows for regression modeling using gradient boosted

trees to identify the multivariate relationships that exist be-

tween the dependent (peak discharge) and independent wa-

tershed attributes. The use of physical constraints along with

proper methods to mitigate overfitting eases the generalization

of the model for diverse catchments. This original data-driven

framework is proposed for scrutinizing hydrological processes

over a large-scale dataset to examine interbasin hydrologic

consistency and improve upon the limited representativeness

of traditional empirical models. The machine-learning mod-

eling performed in this study diverts from time series analysis

to create a universal model owing to the dataset that combines

multitudes hydrologic events and basins. It undertakes no prior

assumptions in the design of the model structure nor with the

calibration of parameters that often hinder the transferability

of conceptual and physically based models across basins. The

framework allows for the performance of prescriptive and

predictive analytics to learn universal hydrological signatures
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and their dependencies from the data, to estimate the cause

factors given the prescribed results, and to predict hydrological

responses. Flood studies rarely combine prescriptive and predic-

tive analytics.While biases arise fromapriori structure designs and

parameter choices in hydrological models, impacting the applica-

bility over ungauged basins, this approach inherently calibrates the

parameters to the data. Once calibrated by data training, the

machine-learning model requires no further tuning. New insights

into catchment’s response are provided by the objective selection

of the most relevant predictors by the machine-learning frame-

work, and the subsequent analysis of their impact. Such a model

can be used as a diagnostic tool to identify and interpret key hy-

drological processes, a feat that other conceptual models cannot

claim. Through the study of feature importance, simple and par-

simonious models can be designed to represent the basin physics

similarly to mechanistic models. This novel approach seeks to

provide high predictive power, interpretation, and versatility

over diverse basins to address the important hydrologic sciences

challenge of characterization of floods in ungauged basins.

The paper is organized as follows. Section 2 describes the

study region and the flood, physiographic, and rainfall datasets.

Section 3 proposes the method, and the results are discussed in

section 4 in terms of model selection and evaluation. The

summary and conclusions are provided in section 5.

2. Data

a. Predictand: Peak discharge

Flash floods are characterized by the observed peak discharge

during a hydrological event at the basin outlet. Discharge time

series information from the U.S. Geological Survey automated

stream gauges are curated in the Unified Flash Flood Database

(National Severe Storms Laboratory; https://blog.nssl.noaa.gov/

flash/database/) to describe individual flooding events and iden-

tify flooding peak discharge values at more than 10 000 locations

across the United States. The time series information is collected

at intervals ranging from 5 to 60min, and it is suitable for ana-

lyzing the impact of rainfall spatial variability on floods. A subset

of 3490 stream gauge locations is used, with stages jointly defined

by the USGS, the National Weather Service, and local stake-

holders and corresponding to action,minor,moderate, andmajor

flooding. Action stage is defined as the stage at which NWS

forecasters take ‘‘mitigation action for possible significant hy-

drologic activity’’ and it often corresponds to bankfull conditions

(https://www.nws.noaa.gov/directives/sym/pd01009050curr.pdf).

This dataset covers diverse climatologic, hydrologic, andweather

conditions, which makes it a representative flash flood database

over the United States (Gourley et al. 2013).

Gauges that are affected by regulation or diversion are

further screened out using the regulation codes supplied by the

USGS. In this database, a flood event is defined as the period

when streamflow is above the defined action stage for that

gauge. If there is a 24-h period with discharge values below

action stage, then the events are considered as separate. For

each flood event, the database includes the start and end time

(UTC) when the flow first exceeded and dropped below the

action stage threshold, respectively, along with the time (UTC)

and magnitude of peak flow (m3 s21) that is used in this study.

The maximum basin area in this study is approximately

45 000 km2 with a median area of 890 km2, suitable for ana-

lyzing the impact of rainfall spatial variability on floods.

A dataset of 21143 flooding events was finalized for the study,

that capture the influence of rainfall spatial variability on catchment

response, over 1113 basins across diverse climatological and phys-

iological conditions in the contiguous United States (CONUS).

b. Predictors: Geomorphology and climatology

A natural flood generally occurs with intense precipitation or

snowmelt, but the transport of water through the channel net-

work and the magnitude of the peak discharge are regulated by

the physiography of the basin and the variability of rainfall at the

subbasin scale. The physical depiction of the catchment behavior

is enriched through the integration of geomorphologic and cli-

matological characteristics that represent the integrated contri-

bution of hydrologic processes at the basin outlet. The database

comprises attributes representing various properties such as

geomorphology, topography, climatology, vegetation, and soil

with 50 variables from the 902 basins.

As potential explanatory variables of flash flooding, geo-

morphological parameters were derived from the National

Elevation Dataset (NED; http://ned.usgs.gov/) digital eleva-

tion model (DEM) across the CONUS. To ensure compati-

bility between DEM-based flow accumulations and the actual

river network, flow accumulation and direction was extracted

by delineating basins with USGS stations, and the National

Hydrography Dataset (NHD; http://nhd.usgs.gov/) was used to

resample the 30-m DEM to a 1-km grid. The geomorphologic

parameters for delineated catchments were extracted from

these grids. Variables representing soil properties such asmean

depth-to-bedrock andK factor (erodibility) were derived from

the State Soil Geographic (STATSGO) database (Miller and

White 1998). The National Land Cover Dataset (Fry et al.

2011) was used to estimate land cover and land use data such as

the runoff curve number. Last, hydroclimatic variables (e.g.,

mean annual and seasonality of precipitation and tempera-

ture) were extracted from the WorldClim database (https://

www.worldclim.org/data/bioclim.html). The spatially distributed

basin attributes included in this study are provided in Table 1.

To reduce input uncertainties in modeling results, catch-

ments were selected based on climatological snow percent of

total precipitation. Only basins that get less than 20% of their

annual precipitation from snowpack were included. For basins

that get greater than 20% of its annual precipitation from

snowpack, only events in summer months (May–October)

were included. The dataset is devoid of missing values and is

numerical in all its attributes. The representativeness of the

dataset has been previously demonstrated by Saharia et al.

(2017) by mapping basin flashiness over the United States to

predict flash flooding severity in ungauged regions.

c. Predictors: Precipitation spatial variability

The spatial distribution of a rainfall event over a basin is

described through precipitation moments computed from the

Multi-Radar Multi-Sensor (MRMS) precipitation reanalysis

(Zhang et al. 2016; Zhang and Gourley 2018). The MRMS
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reanalysis derives precipitation data at fine spatial and tem-

poral scale (0.018 and 5min) for a period from 2001 to 2011

over the CONUS from the NEXRAD data archive available

from Amazon Web Services (https://aws.amazon.com/public-

datasets/nexrad/). The radar coverage is not uniform across the

country, especially in the western CONUS, and the accuracy of

surface precipitation estimation decreases with radar beam

height (Kirstetter et al. 2010, 2013). To further reduce input

uncertainties in modeling results and to ensure that only high-

quality MRMS rainfall data are included, all events that fall in

basins with mean radar beam height greater than 2 km above

the ground level were discarded.

Formulations for precipitation spatial variability as mo-

ments are used at the event scale to represent rainfall forcing

and characterize its impact on each flooding event reported in

the Unified Flash Flood Database between 2002 and 2011.

These metrics map precipitation organization onto the flow

distance, that is, distance measured from any point in the basin

to the basin outlet along the flow path (Zoccatelli et al. 2011).

The rain-activated basin is the fraction of the watershed that

experiences a rain event. The accumulated precipitation, the flow

distance, and the product of accumulated precipitation and flow

distance are characterized by their moments (mean, standard de-

viation, skewness, and kurtosis) conditioned on the activated basin.

The precipitation moments are computed on the rainfall accu-

mulated before the peak time of the hydrograph over a duration

corresponding to 1.5 times the lag time. The lag time is defined as

the duration between the time of the centroid of effective rainfall

over the basin and the peak time of the hydrograph. Such duration

has been selected following a sensitivity analysis on precipitation

moments and duration performed on a simulated hydrologic data-

base by Emmanuel et al. (2015). Additional metrics were included

such as the rainfall volume, computed as the product between the

activated basin area and the event averaged precipitation, to capture

the volume of water collected from precipitation by the basin

that is expected to contribute to the peak discharge.

To summarize, the precipitation variables and the large

number of geomorphological and climatological variables

included in this study allows us to explore how rainfall spatial

variability, the watershed physiography and climatology im-

pact hydrologic events maximum streamflow over a wide va-

riety of situations. These physically based variables are used as

predictors in the machine-learning framework to train a rep-

resentative model that captures various yet common local and

regional hydrological behaviors.

3. Method

a. Machine-learning approach

The curated large-sample dataset allows for regression

modeling using gradient boosted trees to identify the multi-

variate relationships that exist between the predictand (peak

discharge) and predictors representing the geomorphologi-

cal, climatological, and spatiotemporal attributes of precipi-

tation. The most relevant physically based predictors are

objectively selected through the machine-learning training

procedure. Statistical analysis helps understand and interpret

the predictor–predictand relationships and make predictions

on unseen data in order to test the robustness themodel in the

context of ungauged basins and regional modeling. Previous

hydrological prediction studies have applied deep learning

algorithms such as LSTMs on streamflow time series (e.g.,

Kratzert et al. 2018; Mosavi et al. 2018). Extreme Gradient

Boosting (XGBoost) has been used to forecast streamflow

on single basins (Ni et al. 2020; Yu et al. 2020; Gauch et al.

2019). In the present study, the unique event-based dataset

requires an algorithm adapted to regression benchmark studies

TABLE 1. Important predictors for the study.

Type Variable Meaning

Geomorphological Area Total upstream area that contributes runoff (estimated from adigital

elevation model and flow grids)

G1 Catchment first-order moment of flow distance (Zoccatelli et al. 2011)

G2 Catchment second-order moment of flow distance (Zoccatelli et al. 2011)

River length Measured along a line centered from the basin outlet to the intersection of the

extended main channel and the basin boundary

Relief ratio Relief is the difference in elevation between the outlet and the highest point in

the basin; relief ratio is relief divided by the basin length; it is ameasure of the

basinwide river slope; the higher the relief ratio is, the higher is the runoff

Ruggedness Drainage density multiplied by relief (Strahler 1964)

Slope to outlet Local slope computed at a distance of 1 km over the basin outlet

Rock volume Volume of rock at the outlet

Precipitation moments Activated basin Portion of the basin where rainfall occurs

Rainfall volume Product of activated basin area and average rainfall

Product mean Mean product of accumulated rainfall and flow distance of the activated basin

[Eq. (3)]

Flow distance (mean) Mean flow distance of the activated basin

Climatological bio_10 Mean temperature of warmest quarter

bio_15 Precipitation seasonality: coefficient of variation of monthlymean precipitation

Snow percentage Percentage of snow in the gauge

Temp (mean) Annual mean 2-m temperature
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(Orzechowski et al. 2018). XGBoost is a machine-learning

technique for predictor selection and multivariate regres-

sion analysis that produces a predictionmodel in the formof an

ensemble of weak prediction decision trees. It is a supervised

learning algorithm designed for fast computational time, es-

pecially on large datasets. XGBoost is a form of gradient-

boosted decision trees that can generate new models based on

the prediction of the residual’s errors of prior models. The term

‘‘gradient boosting’’ refers to the utilization of a gradient de-

scent to minimize the loss when adding additional models

(Brownlee 2016). This algorithm sequentially builds and gen-

eralizes models by optimizing of a differentiable loss function

(root-mean-square error). It combines the benefits of the

tree-based and gradient boosted models to overcome mul-

ticollinearity. XGBoost is well known for superior perfor-

mance in terms of prediction accuracy, lower overfitting,

and robustness toward correlated predictors with respect to

other techniques such as random forests, elastic net, or least ab-

solute shrinkage and selection operator (LASSO; Fernández-
Delgado et al. 2019). Empirical models have been observed to

overfit during training (Devia et al. 2015), and the use of

proper methods to mitigate overfitting eases the generaliza-

tion of the model for diverse catchments. XGBoost was se-

lected after testing against other algorithms such as random forest,

the results of which are not shown for the sake of brevity. It is

important that this technique is used through an unbiased method

that trains a representative model learning universal hydrologic

behaviors across scales. For this purpose, a training strategy is de-

signed that applies multifold cross validation across multiple inde-

pendent subsets of training, testing, and validation datasets.

Reproducibility across different basins is monitored through

various regression evaluation metrics that quantify the model

performances. Note that the predictors are not transformed be-

cause tree-based regression algorithms are invariant to mono-

tonic transformations of the independent variables (Segal 1988).

b. Data partitioning and model training

To objectively assess the model performance and ability to

predict in ungauged basins, and reduce overfitting, the main

dataset is partitioned into training, validation, and test data-

sets. Exploratory data analysis is performed using the training

dataset, while hyperparameter tuning (e.g., learning rate and

depth of the tree) and model comparisons are done with the

validation dataset, and the final model is objectively assessed

with the testing dataset. The best model should explain as

much variance in the data as possible (i.e., maximize the

coefficient of determination R2) and minimize the overall

bias [mean relative error (MRE)], and minimize overfitting.

Performance metrics target systematic discrepancies and

random errors in the model predictions with respect to ob-

servations. MRE is used to quantify systematic error, and the

root-mean-square error is used to describe the random error.

To quantify overfitting, an ‘‘accuracy loss’’ is introduced as the

difference in R2 values obtained when comparing the model

predictions with the training and test data. Deeper insight on

the model performance is provided by the conditional bias

computed along each predictor. It allows us to evaluate

whether the model is unbiased multidimensionally.

Data partitioning was performed using stratified random

sampling and by splitting data into training, validation, and

testing sets using a 70:15:15 ratio. This sampling technique

ensures that the subsamples are representative of each other.

During the training step, an XGBoost model derives trees

defined by varying depth and number of nodes according to the

user’s specifications. The ensemble of trees that are generated (or

learned) while training becomes the set of parameters for the

predictive model. These trees are defined by hyperparameters

such as subsample ratios of predictors, learning rate, and max

depth. Hyperparameters are tuned to achieve the best model

performance (i.e., reducing bias and variance). Cross validation is

applied to identify the best model and to improve the model

representativeness by using all observations for both training and

validation (cf. Fig. 1). Among the possible designs of k-fold cross

validation, k 5 4 was selected as a trade-off between model re-

finement and computational time. The training dataset (sample)

is randomly partitioned into four equal-sized subsamples. Cross

validation is performed four times, each time using a different

subsample as the inner-fold validation set for checking themodel

performance, and the remaining three subsamples as inner-fold

training sets. The four results are averaged to produce a single

estimation for a single hyperparameter combination.

Searching for the best parameter combination in the hyper-

parameter space occurs by random selection. Parameter com-

binations are selected 50 times, and each undergoes a fourfold

cross validation (cf. Fig. 1). Essentially, 200 (503 4) models are

tested to find the best hyperparameters. Once the best hyper-

parameter combination is identified these settings are used to

train the predictive model on the training data. The model

performance is then checked on the validation dataset.

An ensemble of models gives more insights into the pre-

dictor importance and reduces bias induced (Beven and Binley

1992). An uncertainty analysis implemented as a Monte Carlo

experiment is applied to avoid any bias associated with dataset

partitioning, to objectively extract a set of empirical models

and to identify the most important predictors. The entire

method described in Fig. 1 (gray area) is performed 40 times

with different subsets of training and validation splits to obtain

40 different models. Note that this approach is different from

the generalized likelihood uncertainty estimator (GLUE),

which applies on conceptual models to quantify the prediction

uncertainty that results from their design and structure. A ‘‘re-

peated random subsampling validation’’ is used to generate

multiple random splits of the dataset into training and validation

data. For each split, amodel fits the training data by identifying the

best hyperparameter combination and by assessing the predictive

accuracy on the validation data. With 40 such unique random

splits, a total of 8000 models are created. Monte Carlo cross vali-

dation allows us to keep the proportion of the training/validation

split independent from the number of iterations (i.e., the number

of partitions) to ensure proper representation of the training and

the validation data (Xu and Liang 2001).

c. Predictor ranking, selection, and importance

Predictor selection is performed recursively after initial

modeling of data. Gradient boosted trees quantify each pre-

dictor importance by measuring the mean decrease in impurity

NOVEMBER 2021 POTDAR ET AL . 2975

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 05:16 PM UTC



(variance) in a forest of trees. It is used to rank predictors as the

more the reduction obtained with a given predictor, the higher

the importance of the predictor.

Each model provides its own unique predictor importance

ranking (Fig. 3). The 40 rankings are aggregated to identify the

most important predictors in terms of frequency of occurrence

(i.e., how often a predictor is selected) and accumulated im-

portance across the 40 models. A given predictor selected at

least once in the 40 iterations is deemed as important and the

accumulated importance is used to rank the predictors overall.

With this definition, 32 of the 50 predictors are identified as

important.

The predictors whose importance is greater than or equal to

the mean of all the predictor importance values are selected to

create a pruned training/validation/testing dataset, uponwhich a

more parsimonious model is trained. Performance metrics be-

tween the parsimonious model and the initial model are sys-

tematically compared and found to be negligible. Table 2

presents descriptive statistics for the 16 predictors in the final set.

4. Results

a. Model selection

A model should be general enough that it explains the var-

iance in the entire dataset to a satisfactory level, while mini-

mizing overfitting. Among the 40 models generated, we choose

the model with the highest R2 value on the validation dataset,

that keeps the training-to-validation performance loss to less

than 15%.

Another substantiation of selection is made with regard to

the physical realism of the model. It should reflect physical

consistency in terms of predictor importance model partial

terms. Among the categories of processes that impact the

hydrologic response of a basin, geomorphology is expected

to have the greatest impact, followed by the spatial dis-

tribution of precipitation (precipitation moments), and

finally the climatology. A predictor importance plot pro-

vides the overall ranking of predictors across the 40 models

and allows us to check their physical consistency, along

with our final chosen model. By combining the predictors

by their category of processes, a representative value of

importance for each category is extracted through the

median value.

b. Model performance

Through the selection method, a model is chosen whose

performance on the validation dataset isR25 0.78. Predictions

from this model are compared with the observed peak values

from the testing dataset that was untouched in all the selection

and ranking procedures. It provides an assessment of the

model’s representativeness and its predictive power in un-

gauged basins. Figure 2a shows a scatterplot comparing the

predicted and observed peak discharge values that display data

pairs grouped along the 1:1 line. A corresponding density-

colored scatterplot of the simulated versus observed unit peak

FIG. 1. Modeling method.
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discharges (Fig. 2b) can be qualitatively compared with Fig. 2a

in Gourley et al. (2017) and suggests superior performance in

predicting peak flows as compared with the CREST water

balance module with kinematic wave routing. Good scores are

reported with aR2 value of 0.77, mean relative error of 0.02%,

root-mean-square error of 157.2m3 s21, and limited over-

fitting as indicated by a train-versus-test R2 loss of 15%. With

such a low mean relative error the model is almost unbiased

overall.

The corresponding model that was trained on the pruned

dataset that contains only selected variables (see sections 3c

and 4c) shows robust performance on the test dataset, with R2

equal to 0.76 with a train-versus-test R2 loss of 10%, mean

relative error of 0.02%, and root-mean-square error of

160m3 s21. This parsimonious model runs faster because it

relies on fewer predictors and can be considered as a candidate

for real-time prediction of peak discharge.

c. Feature selection

The predictor importance plot in Fig. 3 highlights the most

important predictors in the final model and allows us to assess

the physical consistency of the machine-learning approach.

Among these important predictors are nine geomorphological

variables, three variables associated with precipitation mo-

ments, and four climatological variables. The six most impor-

tant predictors are geomorphologic attributes, followed by the

precipitation moment. It indicates that, as expected, the pri-

mary driver of peak discharge is basin physiography, and the

spatial organization of rainfall within the basin also has a

major influence on the basin response. The rainfall volume

is expected to be the most important precipitation moment

as it relates to the peak discharge through the volume of

water processed by the basin during an event. Precipitation

seasonality and mean temperature during the warmest

TABLE 2. Descriptive statistics for the predictors.

Predictors Mean Std Min 25% 50% 75% Max

Area 2130 4020 22 269 888 1980 45 600

River length 84 000 75 400 10 100 35 600 60 300 102 000 659 000

Relief ratio 0.006 0.011 0.000 431 0.001 61 0.002 64 0.006 14 0.168

Slope to outlet 0.0107 0.0107 0.000 577 0.005 34 0.007 81 0.0113 0.192

Temp 12.7 3.77 20.90 10.1 12.3 15.5 22.7

Ruggedness 0.185 0.245 0.004 21 0.0557 0.107 0.182 2.40

Rock volume 6.84 9.23 0 1.00 3.00 8.00 64.0

Activated basin 1270 2710 2.00 155 483 1260 53 800

Flow distance (mean) 40 900 41 400 1690 16 300 28 600 48 900 491 000

Product mean 321 646 0.0935 8.95 94.2 376 28 900

G1 41 100 38 000 3020 17 100 29 600 49 700 276 000

G2 3 840 000 000 8 820 000 000 11 000 000 356 000 000 1 070 000 000 3 050 000 000 95 900 000 000

Snow percentage 11.6 8.80 0 3.90 11.7 17.0 72.7

bio_10 23.0 2.60 8.34 21.4 23.0 24.8 29.8

bio_15 24.7 13.7 6.02 14.9 20.1 32.8 91.1

Rainfall volume 13.5 49.6 0.000 066 0 0.114 1.74 10.1 3410

FIG. 2. (a) Predicted vs observed peak discharge values (test dataset) and (b) density-colored scatterplot of the

simulated vs observed unit peak discharges (test dataset).
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quarter highlight the climatological background driving

the atmospheric processes associated with flooding.

d. Conditional bias

A conditional bias plot shows the model prediction bias con-

ditioned on each predictor to diagnose and understand the rela-

tive dependence of the model accuracy on the predictor values.

The global bias (see section 4b) may result from a balance be-

tween conditional overestimations and underestimations under

various predictors’ values. By assessing the extent to which the

model is conditionally unbiased with respect to each predictor,

conditional bias allows us to assess the model physical realism

and whether it captures the multivariate relationships that

exist between peak discharge and independent precipitation,

climatology, and watershed attributes. Figures 4, 5, and 6

show the conditional biases relative to the observed peak

discharge values in the testing dataset for the geomorpho-

logical, precipitation variability, and climatological predic-

tors, respectively. To allow a comparison between variables,

conditional bias values are computed at percentile bins of

each variable. Conditional biases are within 10% for almost

all predictors’ values, indicating that the model is mostly

multidimensionally unbiased and captures the relationships

between peak discharge precipitation variability, climatol-

ogy, and watershed geomorphology.

Figure 4 shows that overestimation is more frequent for low

geomorphological values (e.g., small watersheds and low rug-

gedness) until the 20th percentile. Otherwise, conditional

biases tend to be within 5%.

For precipitation variability (Fig. 5), the bias condi-

tioned by rainfall volume shows a decreasing trend starting

around 110% below the 10th percentile of rainfall volume

and ending around 22% above the 80th percentile. Above the

50th percentile, conditional biases tend to be within 5%.

Conditional biases associated with climatological pre-

dictors do not show a particular trend (Fig. 6) but display

higher variability around the 0% bias line than their geo-

morphology and precipitation counterparts. Overall, these

results indicate that the model simultaneously and equally

captures differences between hydrologic behaviors in different

FIG. 3. Predictor importance plot.

FIG. 4. Conditional bias for geomorphological predictors.
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catchments, climatologies, and precipitation forcing conditions

to a satisfactory extend.

e. ALE plots

Accumulated local effects (ALE) plots provide additional

insight on the influence of factors on the hydrological response

by quantifying the model response to the predictor values. It

allows us to compare the relative impact of different factors

(geomorphology, spatial distribution of precipitation, and cli-

matology) with respect to flood generation mechanisms. Also,

in addition to the importance plots that indicate a global im-

portance (Fig. 3), ALE plots provide the conditional impacts

for each predictor.

An ALE plot highlights the average impact of a given pre-

dictor on the model predictions (Molnar 2019). ALE plots are

unbiased and valid even when predictors are correlated. They

help reduce complex prediction functions to a newer function

that solely depends on the predictor of interest. To understand

the influence of a given predictor in multivariable functions,

differences in prediction are calculated for the predictor, which

are averaged to define the partial derivative of that predictor

and filter out the interaction with correlated predictors, before

it is centered to improve the interpretation. Partial derivatives

are computed by holding all the other predictors constant and

are conditional to the predictor’s values. The predictor is bin-

ned into intervals to compute prediction differences. Bins are

based on percentile values taken by the predictors to ensure

uniformity across bins and predictors. The differences in the

prediction relay the predictor’s effect in terms of partial de-

rivative for each individual instance in a bin. The partial de-

rivatives are conditionally averaged over each bin to estimate

the local effects. The local effects are accumulated across all

bins to derive ALE values, that are finally centered.

The ALE plots for geomorphological attributes, spatial dis-

tribution of precipitation, and climatology are provided in Figs. 7,

8, and 9, respectively. To interpret the ALE values, one should

consider the value on the y axis as the conditional effect of the

given predictor, when comparedwith the overallmean prediction

for that bin. For instance, in Fig. 6 the difference in peak dis-

charge is 265 cm3 s21 for the 10th percentile of the predictor

area, that is, the prediction is lower by 50 cm3 s21 in comparison

with the mean prediction involving all predictors. To allow a

comparison between variables, ALE values are computed at

percentile bins of each variable. Consistent with the importance

plot (Fig. 3), in general the geomorphological ALE plots display

larger ranges of variations than the precipitation and the clima-

tological ALE plots, indicating that the geomorphological pre-

dictors have a higher impact on the model output (i.e., they

FIG. 5. Conditional bias for precipitation spatiotemporal variability predictors.

FIG. 6. Conditional bias for climatological predictors.
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generate higher differences in predicted peak discharge), while

the climatological predictors have less impact.

As expected, the basin area ALE shows the largest range

and a positive trend in the range [265; 300] m3 s21, again high-

lighting the positive relation between the surface collecting

precipitation and the peak discharge. The relation is not linear,

and the impact of area increases with area itself. Similarly, the

peak discharge increases with relief ratio, although to a lesser

extent. Higher terrain slope is expected to accelerate the con-

version of precipitation into runoff, leading to higher peak

discharge values.

For precipitation moments, rainfall volume has the most

impact on themodel outputs as it relates to the volume of water

contributing to the peak discharge. Interestingly, the impact is

limited before the 85th percentile and significant over the last

15% percentiles of rainfall volume. This may reflect a com-

petition between the rainfall forcing and hydrological pro-

cesses on the flood response, and that the forcing overcomes

the latter through extreme rain rates. Activated basin also re-

lays similar information and hence is also shown to be impor-

tant in the prediction. The mean flow distance primarily relates

to water routing and to the delay between the rainfall forcing

and the flood occurrence rather than to the peak discharge,

hence the weaker impact on the model outputs. In a general,

precipitation moments have a significant impact on peak

discharge.

Climatological ALE plots are flat, indicating that climato-

logical predictors have limited impact on the model outputs.

Bio_10 (mean temperature of warmest quarter) shows a posi-

tive impact with extreme quantiles. As large values of peak

discharge are associated with high precipitation rates, it may

identify regions with thunderstorms and convection that gen-

erate extreme precipitation. These processes tend to occur in

warm areas and seasons.

5. Conclusions

Peak discharge, a key characteristic of floods and flash

floods, was successfully modeled at the hydrological event scale

using a robust machine-learning method applied on a dataset

of 21 143 flooding events that gathers a large variety of basin

physiographical, precipitation variability, and climatological

characteristics across the United States. Multifold cross vali-

dation and independent evaluation results (sections 4b and 4d)

demonstrate that a machine-learning approach can capture

both local, regional, and event-specific hydrologic behaviors,

by learning universal similarities and differences from the

combined data from diverse hydrologic events.

The approach differs from traditional hydrological modeling

in which the best results are usually obtained with models in-

dependently calibrated for each basin. The ability of XGBoost

to simultaneously learn the interdependence between basin

physiography, precipitation variability, climatology, and their

impact on peak discharge, allows to bypass challenges associated

with the estimation and transfer of hydrologic model parame-

ters. An innovation of this study is to demonstrate regional

modeling at the event scale, including the flash flood scale, with

promising comparison with respect to a state-of-the art hydro-

logic modeling framework (section 4b). In addition, it implies

that the information gathered in the dataset appears sufficient to

characterize diverse event-specific hydrologic behaviors across

catchments and precipitation events to a reasonable extent.

This has proved challenging to demonstrate with traditional

FIG. 7. ALE analysis for geomorphological predictors. FIG. 8. ALE analysis for precipitation spatiotemporal variability

predictors.

FIG. 9. ALE analysis for climatological predictors.
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approaches that struggle to maintain hydrologic modeling skills

from a single basin to multiple basins together.

Multivariate relationships between the peak discharge and a

large number of explanatory variables such as the moments of

rainfall and flow distance, spatial variability indices, geo-

morphologic and climatologic factors were modeled using a

multidimensional framework. Along with the relationships,

the significance of these factors was established by objective

selection through the training procedure, and the relative in-

fluences of these factors on peak discharge were also assessed,

thereby, yielding an improved understanding of these depen-

dencies (sections 4c and 4e). The basin physiography is con-

firmed to have a higher impact than precipitation variability,

while climatology has a lower impact.

In terms of perspectives, the conditional bias analysis reveals

that while peak discharge predictions display good perfor-

mances overall, they overestimate the peak discharge observed

at catchments characterized by low geomorphological attributes

(e.g., small catchments, flat terrain). This should be examined

in a future study by including additional predictors to enhance

the information content on event-specific hydrologic behaviors.

Other characteristics of floods and flash floods can be considered

in future analyses such as flashiness, flood duration, flood

threshold exceedance levels. The method outlined in this study

can be used to create efficient machine-learning models that can

be comparedwith existing flood forecasting systems such asEF5.
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